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Abstract--A numerical solution is presented for laminar forced convection of an incompressible periodically 
reversing flow in a pipe of finite length at constant wall temperature. It is found that the four parameters 
that govern the heat transfer characteristics for the problem under consideration are the kinetic Reynolds 
number Re~,, the dimensionless oscillation amplitude Ao, the length to diameter ratio L/D, and the Prandtl 
number of lhe fluid. The numerical results show that annular effects also exist in the temperature profiles 
near the entrance and the exit of the pipe during each half cycle at high kinectic Reynolds numbers. Typical 
phase shifts between temperature and axial velocity at selected locations are illustrated. The averaged heat 
transfer rate is found to increase with both the kinetic Reynolds number and the dimensionless oscillation 
amplitude but decrease with the length to diameter ratio. A correlation equation of the space time averaged 

Nusselt number for air in terms of the three similarity parameters, Re~, Ao and L/D is obtained. 

INTRODUCTION 

A considerable amount  of  theoretical and exper- 
imental work has been devoted to the study of  oscil- 
latory pipe flow since 1929 because of  its important  
applications in bioengineering such as in lungs, blood 
vessels of  animals and human beings. Richardson and 
Tyler [1] were among the first to measure the velocity 
distribution in an oscillatory pipe flow, and discovered 
the so-called "annular  effect,", i.e. the maximum vel- 
ocity in an oscillatory flow occurs near the wall rather 
than at the center of  the pipe as in the case of  unidi- 
rectional steady flow. Analytical solutions for a lami- 
nar sinusoidal oscillatory fully-developed flow in a 
pipe have been obtained by Sexl [2], Wommersley [3] 
and Uchida [4]. Recently, Zhao and Cheng [5] show 
that the governing similarity parameters for an oscil- 
latory and reversing flow in a pipe with finite length 
is the kinetic Reyn,31ds number Reo, the dimensionless 
oscillation amplitude of  fluid Ao and the length to 
diameter ratio of the pipe L/D. They obtained a 
numerical solutior~ for a laminar oscillatory reversing 
flow in a pipe with finite length. It was found that 
there exist three flow regimes in an oscillatory and 
periodically rever,;ing flow at any instance of  time. 
These three flow regimes are : an entrance regime, a 
fully-developed regime and an exit regime. In another 
paper, Zhao and Cheng [6] investigated exper- 
imentally the transition to turbulence in an oscillatory 
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and periodically reversing pipe flow. They found that 
the criteria for transition to turbulence is 

Aox/Re~ > 761. (1) 

The related problem of oscillatory heat transfer in 
a heated pipe subjected to a periodically reversing 
flow has important  applications to the design of  heat 
exchangers and pulse tubes in Stirling machines and 
cryocoolers. However, relatively few experimental and 
numerical investigations have been performed on the 
study of  heat transfer in an oscillatory pipe flow. 
Iwabuchi [7] as well as Hwang and Dybbs [8] obtained 
heat transfer data for forced convection in a tube 
subjected to a periodically reversing flow. Their results 
showed that heat transfer is enhanced when the oscil- 
lation frequency is increased. Kurzweg [9] and 
Gedeon [10] analyzed the enhancement of  axial heat 
transfer in an oscillatory flow between two parallel 
plates. Siegel [11] obtained an analytical solution for 
heat transfer of  a pulsating flow in a channel with 
uniform heat flux ; his analysis showed that the effect 
of  flow oscillation reduces the heat transfer coefficient. 
Recently, Walsh and Yang et al. [12] experimentally 
investigated forced convection cooling in micro- 
electronic cabinets by oscillatory flow techniques. 
They found that electronic component  operating tem- 
peratures can be reduced as much as 40% when the 
oscillatory flow device is employed. 

In this paper, a numerical solution based on the 
control volume approach [13] is obtained for laminar 
forced convection of  a periodically reversing flow in a 
pipe heated at constant temperature. An examination 
of  the governing equations and boundary conditions 
shows that the governing parameters for the problem 
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NOMENCLATURE 

dimensionless oscillation of fluid 
defined in equation (4) 
diameter of the pipe 
instantaneous heat transfer coefficient 
thermal conductivity of the fluid 
length of the pipe 
space-time averaged Nusselt number 
defined in equation (17) 
space-averaged Nusselt number 
defined in equation (16) 
time-averaged Nusselt number defined 
in equation (15) 
local instantaneous Nusselt number 
defined in equation (14) 
dimensional and dimensionless 
pressure of the fluid 
Prandtl number of the fluid 
heat flux at the wall 
dimensional and dimensionless radius 
of the pipe 
kinetic Reynolds number defined in 
equation (4) 
dimensional and dimensionless time 
dimensional and dimensionless 
temperature 

dimensional and dimensionless wall 
temperature of the pipe 
dimensional inlet fluid temperature 
dimensional and dimensionless axial 
velocity 

U . . . .  Umax d i m e n s i o n a l  a n d  d i m e n s i o n l e s s  

maximum cross-sectional mean 
velocity 

Urn, Um dimensional and dimensionless 
cross-sectional mean velocity 

17 dimensionless velocity vector 
x, X dimensional and dimensionless axial 

distance 
Xm,x dimensional maximum fluid 

displacement. 

Greek symbols 
C~ 

6 

2 
V 

P 
0 
fO 

thermal diffusivity of fluid 
thermal boundary layer thickness 
phase angle 
oscillatory period for a half cycle 
kinematic viscousity of fluid 
density of fluid 
dimensionless temperature 
oscillatory frequency. 

Subscripts 
c centerline of the pipe 
i inlet of the pipe 
m cross-sectional mean value 
max maximum value 
o oscillation 
t function of time 
w wall of the pipe 
x function of axial position. 

under consideration are the kinetic Reynolds number 
Re~, the dimensionless oscillation amplitude of fluid 
Ao, the length to diameter ratio of the pipe L/D and the 
Prandtl number Pr. The effects of the kinetic Reynolds 
number, the dimensionless oscillation amplitude of 
fluid, and the length to diameter ratio of the pipe on 
temperature profiles and Nusselt numbers of air are 
illustrated. It is shown that the annular effect also 
exists in the temperature profiles at high kinetic 
Reynolds numbers near the entrance and exit of the 
pipe. As far as the authors are aware, this is the first 
time that annular effects in temperature profiles of an 
oscillating flow are discussed. A correlation equation 
of the space-time averaged Nusselt number for a 
periodically reversing flow of air has been obtained in 
terms of the three similarity parameters, Re,o, Ao and 
L/D. This correlation equation can be used for the 
design of heat exchangers in Stirling machines and 
cryocoolers. 

MATHEMATICAL FORMULATION 

Consider the problem of an incompressible, lami- 
nar, viscous fluid oscillating in a pipe (with diameter 
D and a finite length L) which is connected between 

two large reservoirs at a constant temperature T~ as 
shown in Fig. 1. The pipe is heated at a constant 
temperature Tw. The inlet axial velocity during the 
each half cycle is taken to be uniform over the cross 
section with periodical variations according to the 
prescribed relation 

u(O,r,t)=UmaxSindp 0~< ~b~< 180 ° (2) 

where ~b = ~ot is the phase angle of the cross sectional 
mean velocity (with ~o being the oscillatory frequency) 
and Umax is the maximum cross-sectional mean velocity 
which occurs at ~b = 90 °. We now define the dimen- 
sionless coordinates, time, velocity, pressure and tem- 
perature as (X, R) = (x/D, r/D), z = ~ot, U = u/u . . . .  

e = p/pU2ax and 0 = ( T -  Ti)/(Tw - Ti), where x, r, t, 
p, u and t are the corresponding dimensional quan- 
tities. The governing dimensionless conservation 
equations of mass and momentum for a periodically 
reversing flow are given by [5] 

V. 17 = 0 (3) 

~7 Ao - - 
3~- + 2 -  [(V" V) V+ VP] = (V 217) (4) 

where Ao = XmadD is the dimensionless oscillation 
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Fig. 1. Geometry and thermal boundary conditions for a periodically reversing flow in a heated tube. 

amplitude of fluid with Xma x being the amplitude of 
the fluid displacement, and Re~ = o)D2/v is the kinetic 
Reynolds number with v being the kinematic viscosity 
of the fluid. 

The dimensionless conservation of energy equation 
is given by 

00 + A.  (¢" V) 0 = 1 
0~ . Re~Pr (V20) (5) 

where Pr = v/ct is the Prandtl numner with c~ being the 
thermal diffusivity of fluid. Equation (5) reveals that 
for a given dimensionless fluid displacement Ao and a 
specific fluid (say Pr = 0.71), the kinetic Reynolds 
number Re~ in an oscillatory heat transfer plays the 
same role as that of the Reynolds number for a unidi- 
rectional steady flow, which controls the thickness of 
the thermal boundary layer. It can be speculated that 
the heat transfer rate of an oscillatory pipe flow would 
increase with Re,o because the thermal boundary layer 
becomes thinner with the increase of Re,o. 

Boundary conditions of the velocity adopted in the 
present numerical analysis are no-slip at the tube wall 
and continuous flow conditions at the outlet of the 
tube (X = L/D). fin addition, the axial velocity at the 
inlet (X = 0) during the first half cycle is given by 
equation (2) who:~e dimensionless form is 

U( 'D,  R ,  27) = U m = sin q~ (6) 

where Um = Um/Um~x. It is relevant to note that the 
inlet and outlet conditions change at each half-cycle 
as the fluid flow reverses its direction periodically. The 
thermal boundary conditions for the problem under 
consideration are 

a t X = 0  0~<R~<0.5 0(0, R , z ) = 0  (7) 

a t X = L / D  0<~R<~0.5 0(L/D,R, 27)=O (8) 

00 
at R = 0 0 ~< .Y( ~< L/D ~ = 0 (9) 

a tR = 0.5 O,.:.X<~L/D O(X,O.5 ,z )=Ow=l .  

(lO) 

Thus, we can conclude from equations (3)-(10) that 
the similarity parameters for the problem of oscil- 
latory heat transfer in a pipe subjected to a period- 
ically reversing flow are Ao, Re,o, L/D and Pr. 

NUMERICAL SOLUTIONS 

Numerical solutions to equations (3)-(5) subject 
to boundary conditions (6)-(10) were obtained by 
a control-volume-base method detailed by Patankar 
[ 13]. Because of the extremely thin thermal boundary 
layer at a high kinetic Reynolds number, a highly 
nonuniform grid was deployed. Extensive com- 
putations were performed to ensure grid independent 
solutions for different values of the kinetic Reynolds 
number. A grid independence solution for a particular 
set of parameters was established by reducing the grid 
size until the change in the space-cycle averaged Nus- 
selt number ~Tu (see definition below) is smaller than 
0.4%. For the present problem where the initial vel- 
ocities are arbitrarily chosen to be zero everywhere, a 
steady periodic state is reached after only a few cycles. 

RESULTS AND DISCUSSION 

As mentioned earlier, the problem under con- 
sideration has four similarity parameters : Ao, Re~, 
L/D and Pr. Most of the computations were carried 
out for a laminar flow of air (Pr = 0.71) in a pipe with 
L/D = 40. The frequency of oscillations were varied 
such that the range of Reo~ is from 10 to 400 and the 
range of dimensionless oscillation amplitude of the 
fluid is from 5 to a value less than the critical Ao for 
the onset of turbulence, which is given by equation 
(1). The results of the computations are presented in 
Figs. 2-12. 

Temperature distribution 
Figures 2(a) and (b) illustrate typical temporal vari- 

ations of temperature and axial velocity of the fluid 
near the entrance of the pipe (X = 6.2) for Ao = 15 
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Fig. 2. Temporal velocity and temperature variations at X = 6.2 and at different radial positions for 
Ao = 15, Reo~ = 64 and LID = 40. 

360 

and Reoj = 64 at different radial positions during one 
cycle (0 ° ~< ~b ~< 360°). As shown in Fig. 2(a), during 
the first half  cycle (0 ° ~< q9 ~< 180 °) the fluid tem- 
perature near the entrance changes slowly with the 
phase angle before q9 -~ 45 °, and then it begins to drop 
rapidly due to colder fluid entering the pipe. The fluid 
temperature near the entrance starts to raise near the 
end of  the first half cycle due to the warmer fluid 
exiting from the pipe. Similar trends are observed for 
a higher kinetic Reynolds number Re,, = 250 (Fig. 
3a), with peaks and valleys occurring at different 
phase angles because the phase angles of  the axial 
velocity change with Re,,~. From Figs. 2 and 3, it can 
be observed that, at R = 0, the phase difference 
between the axial velocity and temperature variations 
for Reo, = 64 is about  52 ° while those at Reo~ = 250 
are about  86 °. At  R = 0.47, the corresponding phase 
differences are 84 ° and 60 °, respectively. It can be 
concluded that the phase difference between the vel- 
ocity and temperature in the core flow region increases 
with the kinetic Reynolds number. But the phase 
difference near the pipe wall region decreases with 
the increase of  the kinetic Reynolds number. This is 
because for higher kinetic Reynolds number the heat 

transfer rate is faster near the wall, and consequently, 
the temperature near the wall responds faster with 
respect to the velocity variations. 

Transient temperature profiles near the entrance of  
the pipe (X = 4.5) for Ao = 15 at two kinetic Reynolds 
numbers (Re,j, = 64 and 250) are presented in Figs. 
4(a) and (b), respectively. At  these kinetic Reynolds 
numbers, annular effects exist in the velocity profiles 
(not shown). It is interesting to note that annular 
effects also exist in the temperature profiles of  an 
oscillatory flow as shown in Fig. 4. This annular effect 
becomes more pronounced as the kinetic Reynolds 
number is increased. A comparison of  Figs. 4(a) and 
(b) shows that temperature gradients near the wall 
become steeper when the kinetic Reynolds number is 
increased. 

Transient temperature profiles near the center of  
the heater (X = 15) at a fixed value of  Reo~ = 250 
for two different dimensionless oscillations of  fluid 
(Ao = 15 and 25) are presented in Figs. 5(a) and (b), 
respectively. Figure 5(a) shows that no annular effect 
exists at positions near the middle of  the pipe although 
annular effect is clearly evident near the entrance of  
pipe (X = 4.5) as shown in Fig. 4(b). In comparison 
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of Figs. 4(b) and 5(a), the temperature profiles are 
flatter near the ~aiddle of the pipe than near the 
entrance. These tindings can be explained based on 
equation (5) as follows. At positions near the middle 
of the pipe, the axial temperature gradient are small, 
as will be shown below shortly. Therefore, the second 
term in equation (5) is small and the forced convection 
effect becomes le, ss significant. Thus, the transient 
development of temperature profiles near the middle 
of the pipe depends mainly on the diffusion mech- 
anism. However, if the kinetic Reynolds number is 
fixed at 250 and the fluid displacement Ao is increased 
from 15 to 25, tile convection term in equation (5) 
will become larger and will have some effect on the 
temperature profile. This point is illustrated in Fig. 
5(b) where the variation of temperature along the pipe 
radius becomes more significant at any instant of time. 

Typical variations of the centerline temperature 
along the pipe at different phase angles for Ao = 15 
and at Reo, = 180 are presented in Fig. 6. Because 
the pipe is heated at a constant temperature 0w, the 
centerline temperature of the fluid increases with the 
distance from the entrance or exit of the pipe with a 
maximum value occuring near the middle of the pipe. 

The fact that the fluid temperature variation is almost 
symmetric with respect to x suggests that heat con- 
duction is predominant near the middle of the pipe. 
However, the location at which the maximum value 
of the fluid temperature occurs, depends on time and 
the dimensionless parameters Ao and Re~, 

Heat  f l u x  
The local instantaneous Nusselt number along 

the heated wall for an unsteady flow is defined as 

h(x,  t)D 
N u x ' t  - -  k (11) 

where k is the thermal conductivity of the fluid and 
h is the local instantaneous heat transfer coefficient 
defined as 

qw(X, t) -k (ST/ t3r)r  = D/2 
h(x, t) -- AT(x, t) AT (12) 

where qw is the heat flux at the pipe wall and A T is a 
thermal potential for the heat flux. For an unidi- 
rectional flow AT = Tw-- Tb is the difference between 
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the wall temperature and the local instantaneous bulk 
temperature Tb(x, t) which is defined as 

f~ u(r, t) T(r, t)rdr X, X, 

Tb(X, t) = (13) 

j] u(r, t)rdr X, 

The instantaneous bulk temperature defined by equa- 
tion (13) lost its physical significance in an oscillating 
and reversing flow because the cross-sectional mean 

velocity becomes zero twice in each cycle, which gives 
rise to an infinite value of  the bulk temperature twice 
in a cycle. This will cause anomalies in evaluating the 
local Nusselt  number defined in equations (11) and 
(12). For  this reason, for a periodically reversing flow 
we choose AT  = T , -  Ti which is the thermal potential 
for heat transfer from the heated wall of  the pipe to 
the cold fluid at the entrance and the exit of  the pipe. 
Substituting this temperature difference in equation 
(12) gives the following expression for the local instan- 
taneous Nusselt number 
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00 

It s h o u l d  be  n o t e d  t h a t  the  va l ue  o f  Nux,, is a f u n c t i o n  

o f  t he  axia l  l o c a t i o n  x a n d  t i me  t. T h e  t i m e - a v e r a g e d  

local  N u s s e l t  n u m b e r  Nux, t he  s p a c e - a v e r a g e d  i n s t a n -  

t a n e o u s  N u s s e l t  m m a b e r  Nut, a n d  the  s p a c e - t i m e  aver -  
aged  N u s s e l t  n u m b e r  Nu a re  def ined  respec t ive ly  as 

fo l lows  

Nux = ~ Nux,t dt 

Nut = Z Nux,, dx 

05) 

(16) 
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and 

Nu = ~ Nuut dt = ~ Nux dx 

- ll;f  
Nu = ~ Nu~,t dxdt.  (17) 

The variations of  the local instantaneous Nusselt 
number Nu~.~ at different dimensionless axial locations 
of  the pipe for Ao = 15 at Re,o = 64 and Re,,, = 250 
for a complete cycle are presented in Figs. 7(a) and (b), 
respectively. The solid lines represent the locations in 
the entrance region while the dashed lines represent 
the locations in the exit region. It should be noted that 
the phase difference between the entrance location and 
the corresponding exit location is 180 +. Let us focus 
our attention first on the entrance region. Near  the 
inlet at X = 2 for example, the instantaneous Nusselt 
number increases with q~ until it reaches a maximum 
value around 4~ = 90'L This is because the colder fluid 
enters the entrance region with the cross-sectional 
mean velocity according to equation (2) with its 
maximum velocity around q~ = 90~L Since the colder 
fluid enters with a decreasing velocity after ~b > 90 °, 
the heat transfer rate begins to descrease after 
~b > 90 °. The heat transfer rate continues to descrease 
as the velocity of  the entering fluid decrease to zero at 
about  180 ° . Subsequently, the fluid reverses its direc- 
tion and the warmer fluid passes through the location 
at X = 2 and consequently the heat transfer between 
the fluid and the pipe continues to decrease. The value 
of  Nux., decreases as the value of  X is increased from 
the inlet to the middle of  the pipe (X = 20). Toward 
the middle of  the pipe, the instantaneous Nusselt num- 

ber becomes vanishingly small. Its value is almost 
symmetric with respect to q~ with the maximum value 
occuring near ~b = 180 °. A comparison of  Figs. 7(a) 
and (b) shows that value of  Nux,t increases as the 
kinetic Reynolds number is increased. 

The effects of  Ao and Re,, on the time-averaged local 
Nusselt number Nux of air along the axial location are 
presented in Fig. 8. Generally, the time-averaged local 
Nusselt number Nux is symmetrical with respect of  
the middle of  the pipe because of  the symmetrical 
boundary conditions for both velocity and tem- 
perature for the problem under consideration. A com- 
parison of  Case 1 (Ao = 20, Re~ = 64) and Case 2 
(Ao = 20, Re~ = 250), shows that the value of  Nux 
increases with the increase of  Re~, at a fixed value of  
Ao, which implies that the heat transfer rate increases 
with the increase of  frequency at a fixed oscillation 
amplitude of  fluid. This is because the thermal bound- 
ary thickness 3 in an oscillatory flow is 

( 1 ~ '~2 
6 oc \ ~ /  (18) 

which implies that the thermal boundary layer thick- 
ness becomes thinner with Re,~. Consequently, the 
heat transfer rate increases with the value of  Re~. 
Similarly, a comparison of  Case 2 (Ao = 20, 
Reo~ = 250) and Case 3 (Ao = 35, Re,,, = 250) shows 
that the value of  Nux increases with the increase of  Ao 
at a fixed value of  Re~,, which implies that the heat 
transfer rate increases with the increase of  oscillation 
amplitude of  fluid at a fixed value of  frequency. This 
can be explained based on the energy equation (5). 
With fixed values of  Re~ and Pr, the convection term 
in equation (5) becomes more significant with the 
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Fig. 7. Temporal variations of the local instantaneous Nusselt number at different axial locations for 
(a) Ao = 15, Re,o = 64 and L/D ~ 40; (b) Ao = 15, Reo ~- 250 and L/D = 40. 

increasing value of  Ao. Physically, a higher value of  
Ao means a larger amount  of  fluid is heated by the 
tube during each cycle. It can also be observed from 
Fig. 8 that the heat transfer rate becomes vanishingly 
small at the middle of  the heated pipe (X = 20) for 
smaller Ao, because most of  the fluid near the middle 
of  the pipe never exits from the heated tube. 

The effects o f  Ao and Re,~ on the space-averaged 
Nusselt number  instantaneous Nut for the three cases 
in Fig. 8 are ill astrated in Fig. 9. Similarily, it is 

observed that the space-averaged heat transfer rate 
increases with the increase of  both the dimensionless 
oscillation amplitude of  fluid and the kinetic Reynolds 
number. It is interesting to compare the time variation 
of  the space-averaged instantaneous Nusselt number 
with the specified sinusoidal variation of  the cross- 
sectional mean flow velocity Um given by equation (6). 
It is found that the phase difference between the cross- 
sectional mean velocity Um and the the space-averaged 
Nusselt number Nut is about  18 ° for all cases. This is 
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Fig. 8. Effects of the dimensionless oscillation amplitude of fluid Ao and the kinetic Reynolds number Re~ 
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Fig. 9. Effects of the dimensionless oscillation amplitude of fluid Ao and the kinetic Reynolds number Re~ 
on space-averaged instantaneous Nusselt number for L/D = 40. 

because tha t  the local ins tan taneous  Nussel t  n u m b e r  
in the entrance region predominates ,  as evidenced in 
Figs. 7(a) and  (b), which is ou t  of  phase  wi th  the 
cross-sectional m e a n  velocity Um at  approximate ly  
18 ° . 

The effect of  the rat io  of  length to d iameter  rat io  of  

pipe L/D on the local heat  t ransfer  rate for Ao = 25 
and  Redo = 180 is displayed in Fig. 10. As shown in 
this figure when L/D is increased f rom 25 to 50, the 
t ime-averaged Nussel t  n u m b e r  Nux in the entrance 
region before X = 5 remains  the same value while 
those in the middle  region of  the pipe increase with 
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Fig. 10. Effects of length : diameter ratio of the pipe on the time-averaged local Nusselt number for Ao = 25 

and Re~ - 180. 

the decrease of  L/D. Physically, the decrease of  L/D 
at  a fixed value of  Ao means  tha t  the rat io of  the fluid 
displacement  to the pipe length becomes larger, and  
therefore  a larg,~r a m o u n t  of  heat  is carried f rom the 
pipe to the reservoirs. 

The  t ime-space averaged Nussel t  n u m b e r  Nu was 
computed  according to equa t ion  (17) for Ao = 10 to 
35 and  Reo~ = 10 to 400 at  L/D = 40. The  results of  
these computa t ions  are presented as a solid line in Fig. 

11. It  is found tha t  the solid line can be correlated by 
the following expression 

Nu 0 9 0 .656  = 0.00495Ao Reoj . (19) 

Compu ta t i ons  were then carried out  for  different 
values of  L/D ranging f rom 10 to 120 for air  (Pr = 0.7) 
at  three different sets of  Ao and  Re~, ; (i) Ao = 20, 
Re<, = 250 ; (ii) Ao = 25, Re,o = 180 and  (iii) Ao = 35, 
Redo = 100. It  is found tha t  the t ime-space  averaged 
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L/D = 40. 
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Fig. 12. Correlation equation of the space-time averaged Nusselt number for air in terms ofAo, Re~ and 
L/D. 

Nusselt number for air can be correlated by the follow- 
ing expression 

N~ = 0.00495A °9 ReO.656. [43.74(D/L) 1~8 + 0.06]. 

(20) 

A comparison of  equation (20) with the numerical 
results is presented in Fig. 12. 

CONCLUDING REMARKS 

The problem of oscillatory heat transfer in a period- 
ically reversing flow is governed by four similarity 
parameters : the Prandtl number Pr, the kinetic Reyn- 
olds number Reo, the dimensionless oscillation ampli- 
tude of  fluid Ao and the length to diameter ratio of  
the heated tube L/D. A numerical solution to the 
conservation equation of  mass, momemtum and 
energy has been obtained for an oscillatory and revers- 
ing pipe flow of  air. The computed results reveal that 
annular effects also exist in the temperature profiles 
of  an oscillatory flow at high kinetic Reynolds number 
near the entrance and exit locations of  the tube. It is 
found that for a fixed value of  L/D and a specific 
Prandtl number, the space-t ime average heat transfer 
rate increases with both the parameters Ao and Re,o. 
Although that L/D has a small effect on the local heat 
transfer rate near the entrance and exit of  the pipe, its 
effect becomes significant on the space-time averaged 
heat transfer rate. A correlation equation of  the space-  
time averaged Nusselt number for air in terms of  the 
three dimensionless parameters Ao, Reo~ and L/D has 
been obtained. 
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